Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nat Immunol ; 24(6): 966-978, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245297

ABSTRACT

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Australia/epidemiology , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing , Immunity , Antibodies, Viral , Vaccination
2.
EBioMedicine ; 92: 104574, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2308166

ABSTRACT

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Subject(s)
COVID-19 , Carrier Proteins , Cricetinae , Humans , Mice , Rats , Animals , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Australia , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
3.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2300905

ABSTRACT

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , Receptors, Antigen, T-Cell, alpha-beta , COVID-19 Vaccines , SARS-CoV-2 , BNT162 Vaccine , CD8-Positive T-Lymphocytes
4.
Immunity ; 2023.
Article in English | EuropePMC | ID: covidwho-2267118

ABSTRACT

While the protective role of neutralising antibodies against COVID-19 is well-established, questions remain about the relative importance of cellular immunity. Using 6 pMHC-multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post-symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections. Graphical Our understanding of T cell responses to SARS-CoV-2 vaccination and breakthrough infection has lagged behind B cells and antibodies. Here, Koutsakos et al utilize longitudinal sampling to demonstrate rapid activation of SARS-CoV-2-specific CD4+ and CD8+ T cells during breakthrough infection. Furthermore, Spike-specific CD8+ T cell activation correlates with viral clearance.

5.
Immunity ; 56(4): 879-892.e4, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2267119

ABSTRACT

Although the protective role of neutralizing antibodies against COVID-19 is well established, questions remain about the relative importance of cellular immunity. Using 6 pMHC multimers in a cohort with early and frequent sampling, we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection in previously vaccinated individuals. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable degrees of expansion. The frequency of activated SARS-CoV-2-specific CD8+ T cells at baseline and peak inversely correlated with peak SARS-CoV-2 RNA levels in nasal swabs and accelerated viral clearance. Our study demonstrates that a rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Breakthrough Infections , RNA, Viral , Antibodies, Neutralizing , Antibodies, Viral , Vaccination
6.
Nat Med ; 29(3): 574-578, 2023 03.
Article in English | MEDLINE | ID: covidwho-2266298

ABSTRACT

Booster vaccination for the prevention of Coronavirus Disease 2019 (COVID-19) is required to overcome loss of protection due to waning immunity and the spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Studies have assessed the ability of existing ancestral-based vaccines as well as novel variant-modified vaccine regimens to boost immunity to different variants, and a crucial question is to assess the relative benefits of these different approaches. Here we aggregate data on neutralization titers from 14 reports (three published papers, eight preprints, two press releases and notes of one advisory committee meeting) comparing booster vaccination with the current ancestral-based vaccines or variant-modified vaccines. Using these data, we compare the immunogenicity of different vaccination regimens and predict the relative protection of booster vaccines under different scenarios. We predict that boosting with ancestral vaccines can markedly enhance protection against both symptomatic and severe disease from SARS-CoV-2 variant viruses, although variant-modified vaccines may provide additional protection, even if not matched to the circulating variants. This work provides an evidence-based framework to inform choices on future SARS-CoV-2 vaccine regimens.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral
8.
Nat Commun ; 14(1): 1633, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2255813

ABSTRACT

Vaccine protection from symptomatic SARS-CoV-2 infection has been shown to be strongly correlated with neutralising antibody titres; however, this has not yet been demonstrated for severe COVID-19. To explore whether this relationship also holds for severe COVID-19, we performed a systematic search for studies reporting on protection against different SARS-CoV-2 clinical endpoints and extracted data from 15 studies. Since matched neutralising antibody titres were not available, we used the vaccine regimen, time since vaccination and variant of concern to predict corresponding neutralising antibody titres. We then compared the observed vaccine effectiveness reported in these studies to the protection predicted by a previously published model of the relationship between neutralising antibody titre and vaccine effectiveness against severe COVID-19. We find that predicted neutralising antibody titres are strongly correlated with observed vaccine effectiveness against symptomatic (Spearman [Formula: see text] = 0.95, p < 0.001) and severe (Spearman [Formula: see text] = 0.72, p < 0.001 for both) COVID-19 and that the loss of neutralising antibodies over time and to new variants are strongly predictive of observed vaccine protection against severe COVID-19.


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Vaccine Efficacy
9.
EJHaem ; 4(1): 216-220, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2274112

ABSTRACT

Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.

11.
Adv Healthc Mater ; 12(17): e2202595, 2023 07.
Article in English | MEDLINE | ID: covidwho-2246117

ABSTRACT

Employing monoclonal antibodies to target vaccine antigens to different immune cells within lymph nodes where adaptive immunity is initiated can provide a mechanism to fine-tune the magnitude or the quality of immune responses. However, studying the effects of different targeting antibodies head-to-head is challenging due to the lack of a feasible method that allows rapid screening of multiple antibodies for their impact on immunogenicity. Here self-assembling ferritin nanoparticles are prepared that co-display vaccine antigens and the Fc-binding domain of Staphylococcal protein A, allowing rapid attachment of soluble antibodies to the nanoparticle surface. Using this tunable system, ten antibodies targeting different immune cell subsets are screened, with targeting to Clec9a associated with higher serum antibody titers after immunization. Immune cell targeting using ferritin nanoparticles with anti-Clec9a antibodies drives concentrated deposition of antigens within germinal centers, boosting germinal center formation and robust antibody responses. However, the capacity to augment humoral immunity is antigen-dependent, with significant boosting observed for prototypic ovalbumin immunogens but reduced effectiveness with the SARS-CoV-2 RBD. This work provides a rapid platform for screening targeting antibodies, which will accelerate mechanistic insights into optimal delivery strategies for nanoparticle-based vaccines to maximize protective immunity.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , SARS-CoV-2 , Ferritins , COVID-19/prevention & control , Antigens , Antibodies, Viral , Immunity, Humoral , Nanoparticles/chemistry
12.
Emerg Infect Dis ; 29(2): 381-388, 2023 02.
Article in English | MEDLINE | ID: covidwho-2215193

ABSTRACT

Several studies have shown that neutralizing antibody levels correlate with immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, results of these studies vary in terms of estimates of the level of neutralizing antibodies required for protection. By normalizing antibody titers, we found that study results converge on a consistent relationship between antibody levels and protection from COVID-19. This finding can be useful for planning future vaccine use, determining population immunity, and reducing the global effects of the COVID-19 pandemic.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics/prevention & control , Antibodies, Neutralizing , COVID-19 Vaccines , Antibodies, Viral , Spike Glycoprotein, Coronavirus
13.
Immunol Cell Biol ; 101(4): 321-332, 2023 04.
Article in English | MEDLINE | ID: covidwho-2213646

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes severe coronavirus disease 2019 (COVID-19) in a small proportion of infected individuals. The immune system plays an important role in the defense against SARS-CoV-2, but our understanding of the cellular immune parameters that contribute to severe COVID-19 disease is incomplete. Here, we show that populations of effector γδ T cells are associated with COVID-19 in unvaccinated patients with acute disease. We found that circulating CD27neg CD45RA+ CX3CR1+ Vδ1effector cells expressing Granzymes (Gzms) were enriched in COVID-19 patients with acute disease. Moreover, higher frequencies of GzmB+ Vδ2+ T cells were observed in acute COVID-19 patients. SARS-CoV-2 infection did not alter the γδ T cell receptor repertoire of either Vδ1+ or Vδ2+ subsets. Our work demonstrates an association between effector populations of γδ T cells and acute COVID-19 in unvaccinated individuals.


Subject(s)
COVID-19 , T-Lymphocyte Subsets , Humans , Acute Disease , Receptors, Antigen, T-Cell, gamma-delta , SARS-CoV-2
14.
iScience ; 25(11): 105259, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2122546

ABSTRACT

The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralize virus, have potential for the treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralize the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralizing capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralizers with enhanced ability to control viral escape mutants.

15.
Immunol Cell Biol ; 100(10): 750-752, 2022 11.
Article in English | MEDLINE | ID: covidwho-2113212

ABSTRACT

A recently published article has confirmed that a novel immunization method of sustained and escalating antigen delivery augments the magnitude, quality and durability of humoral immune responses.


Subject(s)
HIV-1 , Immunity, Humoral , Germinal Center , Antigens , Immunization
16.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Article in English | MEDLINE | ID: covidwho-2112643

ABSTRACT

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Humans , Hemagglutinins , Antibodies, Viral , Vaccination , Hemagglutination Inhibition Tests , Vaccines, Inactivated , Macaca fascicularis , Virion , Immunoglobulin A , Immunoglobulin G , Nucleoproteins
17.
Clin Transl Immunology ; 11(10): e1424, 2022.
Article in English | MEDLINE | ID: covidwho-2085017

ABSTRACT

Objectives: Following infection with SARS-CoV-2, virus-specific antibodies are generated, which can both neutralise virions and clear infection via Fc effector functions. The importance of IgG antibodies for protection and control of SARS-CoV-2 has been extensively reported. By comparison, other antibody isotypes including IgA have been poorly characterised. Methods: Here, we characterised plasma IgA from 41 early convalescent COVID-19 subjects for neutralisation and Fc effector functions. Results: Convalescent plasma IgA from > 60% of the cohort had the capacity to inhibit the interaction between wild-type RBD and ACE2. Furthermore, a third of the cohort induced stronger IgA-mediated ACE2 inhibition than matched IgG when tested at equivalent concentrations. Plasma IgA and IgG from this cohort broadly recognised similar RBD epitopes and had similar capacities to inhibit ACE2 from binding to 22 of the 23 prevalent RBD mutations assessed. However, plasma IgA was largely incapable of mediating antibody-dependent phagocytosis in comparison with plasma IgG. Conclusion: Overall, convalescent plasma IgA contributed to the neutralising antibody response of wild-type SARS-CoV-2 RBD and various RBD mutations. However, this response displayed large heterogeneity and was less potent than IgG.

18.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-2076210

ABSTRACT

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Immunologic Memory , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell, alpha-beta/genetics , Spike Glycoprotein, Coronavirus
19.
Front Immunol ; 13: 889372, 2022.
Article in English | MEDLINE | ID: covidwho-2071084

ABSTRACT

Joining a function-enhanced Fc-portion of human IgG to the SARS-CoV-2 entry receptor ACE2 produces an antiviral decoy with strain transcending virus neutralizing activity. SARS-CoV-2 neutralization and Fc-effector functions of ACE2-Fc decoy proteins, formatted with or without the ACE2 collectrin domain, were optimized by Fc-modification. The different Fc-modifications resulted in distinct effects on neutralization and effector functions. H429Y, a point mutation outside the binding sites for FcγRs or complement caused non-covalent oligomerization of the ACE2-Fc decoy proteins, abrogated FcγR interaction and enhanced SARS-CoV-2 neutralization. Another Fc mutation, H429F did not improve virus neutralization but resulted in increased C5b-C9 fixation and transformed ACE2-Fc to a potent mediator of complement-dependent cytotoxicity (CDC) against SARS-CoV-2 spike (S) expressing cells. Furthermore, modification of the Fc-glycan enhanced cell activation via FcγRIIIa. These different immune profiles demonstrate the capacity of Fc-based agents to be engineered to optimize different mechanisms of protection for SARS-CoV-2 and potentially other viral pathogens.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Peptidyl-Dipeptidase A/metabolism , RNA, Viral , SARS-CoV-2
20.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2046466

ABSTRACT

The development of therapeutics to prevent or treat COVID-19 remains an area of intense focus. Protein biologics, including monoclonal antibodies and nanobodies that neutralise virus, have potential for treatment of active disease. Here, we have used yeast display of a synthetic nanobody library to isolate nanobodies that bind the receptor-binding domain (RBD) of SARS-CoV-2 and neutralise the virus. We show that combining two clones with distinct binding epitopes within the RBD into a single protein construct to generate biparatopic reagents dramatically enhances their neutralising capacity. Furthermore, the biparatopic nanobodies exhibit enhanced control over clinically relevant RBD variants that escaped recognition by the individual nanobodies. Structural analysis of biparatopic binding to spike (S) protein revealed a unique binding mode whereby the two nanobody paratopes bridge RBDs encoded by distinct S trimers. Accordingly, biparatopic nanobodies offer a way to rapidly generate powerful viral neutralisers with enhanced ability to control viral escape mutants. Graphical

SELECTION OF CITATIONS
SEARCH DETAIL